Game Plan

Lecture

Disease pathogenesis Portals of entry Mechanisms of pathogenicity Toxins

Lab

Finish Minor Unknowns Staph, Strep and Enteric Unknowns

Next Class: Lab Exam

Bacterial strategies for pathogenicity and virulence

- Portals of entry 1.
- 2. Infectious dose
- Adherence 3.
- Penetration, evasion and 4. damage
- 5. Portals of exit

alobal reaulator iron transport viderophore receptor two component system toxin expression arginir lipopolysacchari fimbrial operan UNCLASSIFIED 673 hypothetico transcriptional osmotic stres conserved hypothetical ethanol dehydrogen: motility cell envelope biogenesis remuriber errienterobostin Of ccol MULTIDRUG RESISTANCE PROTEIN adhesion uncharacterized cylosine permease transcriptional repressor TOXIC EXTRACELLULAR METALLOENDOPEPTIDASE

ABC transporter system metabolism · He component A modifying enzyme LAR POLYSACCHARIDE EXPORTER biosunthesis

> acetate operon repressor olyamine surface protein ME-ASSOCIATED GTPASE

SCRIPTION FACTOR nutyrobet ine antiporter cold stress response s regulon ar sporte earboxypeptidase vironmental interactions flagellar synthesis

1. Portals of entry

TABLE 15.1 Portals of Entry for the Pathogens of Some Common Diseases			
Portal of Entry	Pathogen*	Disease	Incubation Period
Mucous Memi	oranes		1893 B. 1010 B.
Respiratory trac	t Streptococcus pneumoniae	Pneumococcal pneumonia	Variable
and the second second	Mycobacterium tuberculosis [†]	Tuberculosis	Variable
	Bordetella pertussis	Whooping cough (pertussis)	12-20 days
	Influenza virus	Influenza	18-36 hours
	Measles virus (Morbillivirus)	Measles (rubeola)	11–14 days
	Rubella virus (Rubivirus)	German measles (rubella)	2-3 weeks
	Epstein-Barr virus (Lymphocryptovirus)	Infectious mononucleosis	2-6 weeks
	Varicella-zoster virus (Varicellovirus)	Chickenpox (varicella) (primary infection)	14–16 days
	Histoplasma capsulatum (fungus)	Histoplasmosis	5–18 days
Gastrointestinal	tract Shigella spp.	Bacillary dysentery (shigellosis)	1-2 days
	Brucella spp.	Brucellosis (undulant fever)	6-14 days
	Vibrio cholerae	Cholera	1-3 days
	Salmonella enterica	Salmonellosis	7-22 hours
	Salmonella typhi	Typhoid fever	14 days
	Hepatitis A virus (Hepatovirus)	Hepatitis A	15-50 days
	Mumps virus (Rubulavirus)	Mumps	2-3 weeks
	Trichinella spiralis (helminth)	Trichinosis	2-28 days

*All pathogens are bacteria, unless indicated otherwise. For viruses, the viral species and/or genus mome is given.

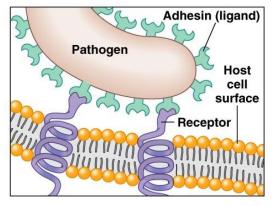
[†]These pathogens can also cause disease after entering the body via the gastrointestinal tract. [‡]These pathogens can also cause disease after entering the body via the parenteral route.

Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

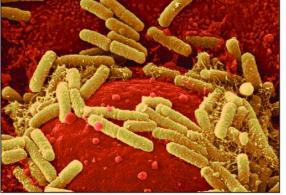
1. Portals of entry

TABLE 15.1	Portals of Entry for the Patho	ogens of Some Common Disec	ises (continued)
Portal of Entr	y Pathogen*	Disease	Incubation Period
Mucous Mem	branes		100 00 00
Genitourinary	tract Neisseria gonorrhoeae Treponema pallidum Chlamydia trachomatis Herpes simplex virus type 2 Human immunodeficiency virus Candida albicans (fungus) [‡]	Gonorrhea Syphilis Nongonococcal urethritis Herpes virus infections s (HIV) [‡] AIDS Candidiasis	3–8 days 9–90 days 1–3 weeks 4–10 days 10 years 2–5 days
Skin or Pare Route	nteral Clostridium perfringens Clostridium tetani Rickettsia rickettsii Hepatitis B virus (Hepadnaviru Rabiesvirus (Lyssavirus) Plasmodium spp. (protozoan)	Gas gangrene Tetanus Rocky Mountain spotted fev Hepatitis B Rabies Malaria	1–5 days 3–21 days er 3–12 days 6 weeks–6 months 10 days–1 year 2 weeks

*All pathogens are bacteria, unless indicated otherwise. For viruses, the viral species and/or genus mome is given. [†]These pathogens can also cause disease after entering the body via the gastrointestinal tract. [‡]These pathogens can also cause disease after entering the body via the parenteral route.


Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

2. Infectious Dose- ID₅₀


Portal of entry	ID ₅₀ for <i>B. anthracis</i>
Skin	10-50 endospores
Inhalation	10,000-20,000 endospores
Ingestion	250,000-1,000,000 endospores

Organism	ID ₅₀	
Ebola virus	1-10 particles (non-human primates)	
Influenza virus	100- 1000 particles (humans)	

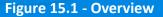
3. Adherence

(a) Surface molecules on a pathogen, called adhesins or ligands, bind specifically to complementary surface receptors on cells of certain host tissues.

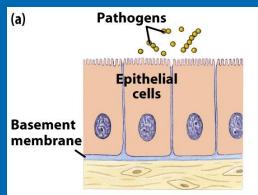
(b) *E. coli* bacteria (yellow-green) on human bladder cells.

SEM

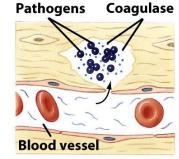
1µm


(c) Bacteria (yellow) adhering to human skin.

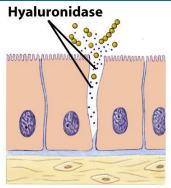
Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings.


1. Capsules

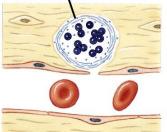
2. Pili and fimbriae


- 3. Biofilms
- 3. Other adhesins
 - Glycoproteins
 - Lipoproteins

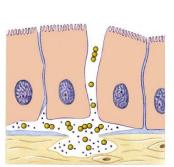
4. Penetration, evasion and damage- exoenzymes and other substances


1. Invasive pathogens reach epithelial surface.

1. Pathogens produce coagulase.

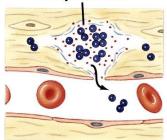

Figure 14-5 Microbiology, 6/e © 2005 John Wiley & Sons

(b)



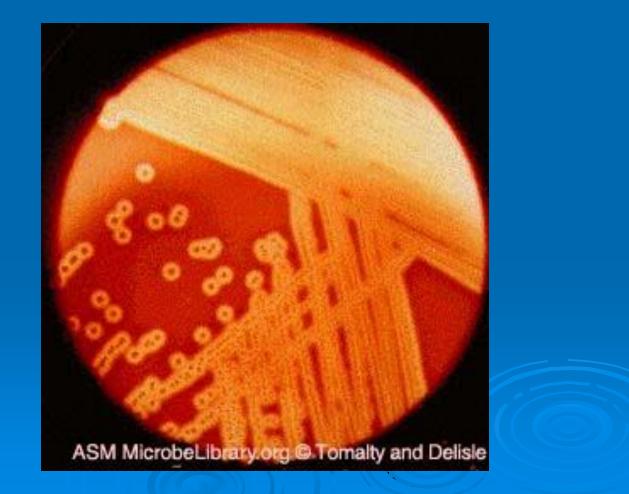
2. Pathogens produce hyaluronidase.

Blood clot



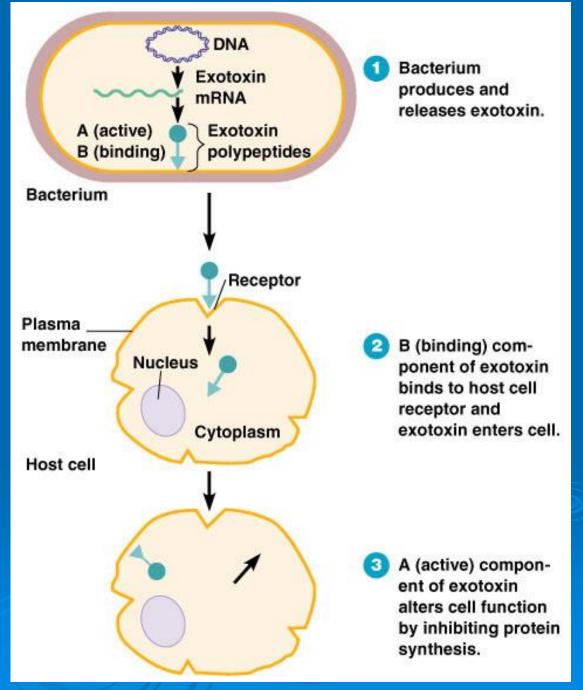
2. Blood clot forms around pathogens.

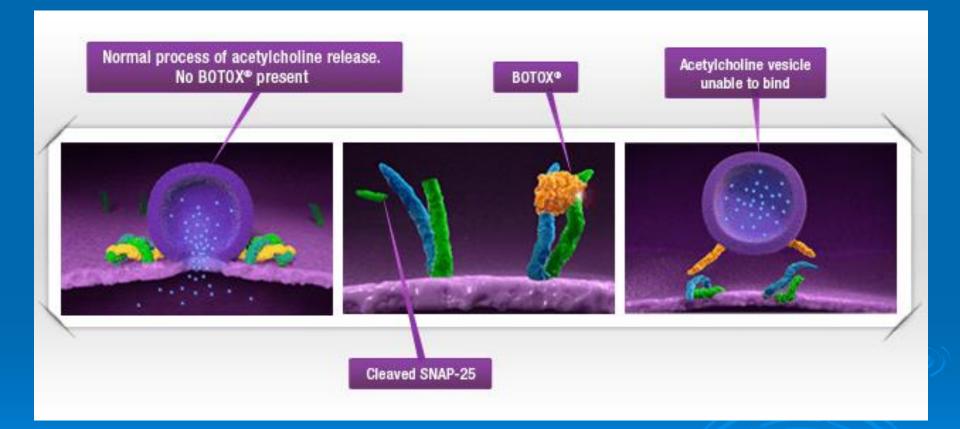
3. Pathogens invade deeper tissues.


Streptokinase

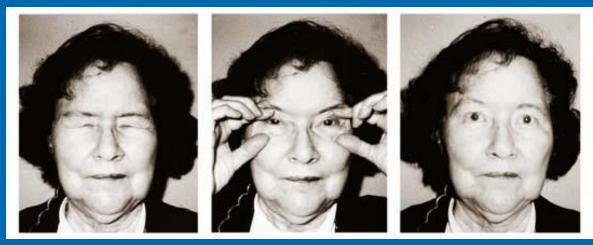
3. Pathogens produce streptokinase, dissolving clot and releasing bacteria.

- 1. Hyaluronidase
- 2. Coagulase
- 3. Kinase
- 4. IgA protease
- 5. Siderophores


4. Penetration, evasion and damage- TOXINS


Exotoxins	Cell wall
Exotoxin	Exotoxin
Source	Mostly Gram + (can be Gram -)
Metabolic product	By-products of growing cell
Chemistry	Protein, water soluble, heat labile
Fever?	No
Neutralized by antitoxin	Yes
LD ₅₀	Small - Very potent 1 mg of <i>Clostridium botulinum</i> toxin can kill 1 million guinea pigs

1. A-B toxins


Ex. *Clostridium botulinum* toxin

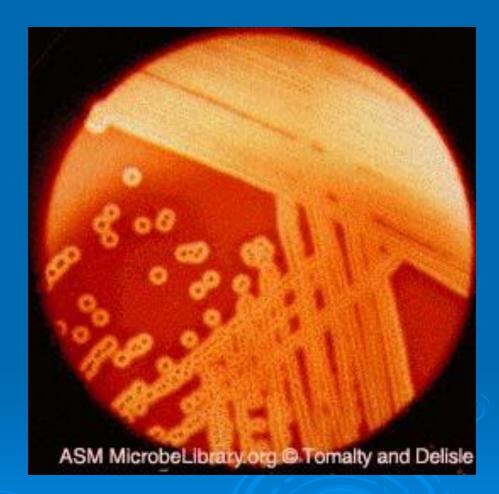
Botulinum toxin (BOTOX) prevents acetylcholine release at neuromuscular junction

BOTOX: medical applications

Joseph Jankovic, M.D., professor of neurology, Baylor College of Medicine, Houston, Texas

Blepharospasm

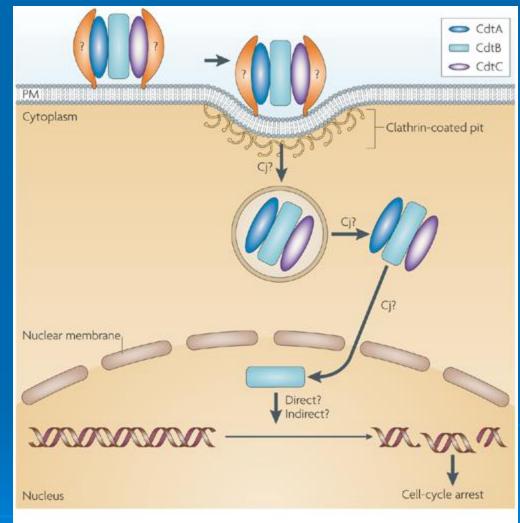
Hyperhidrosis



BOTOX: cosmetic applications

2. Membrane disrupting or cytolytic toxins

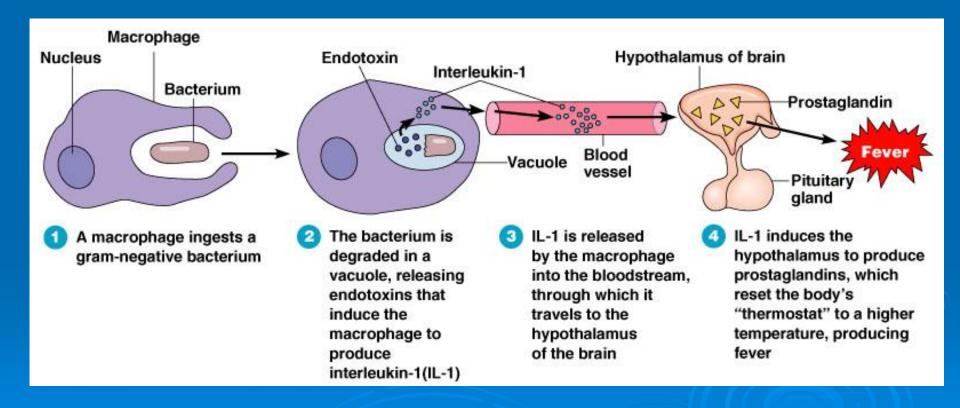
Ex. Hemolysins and leukocidins


3. Superantigens

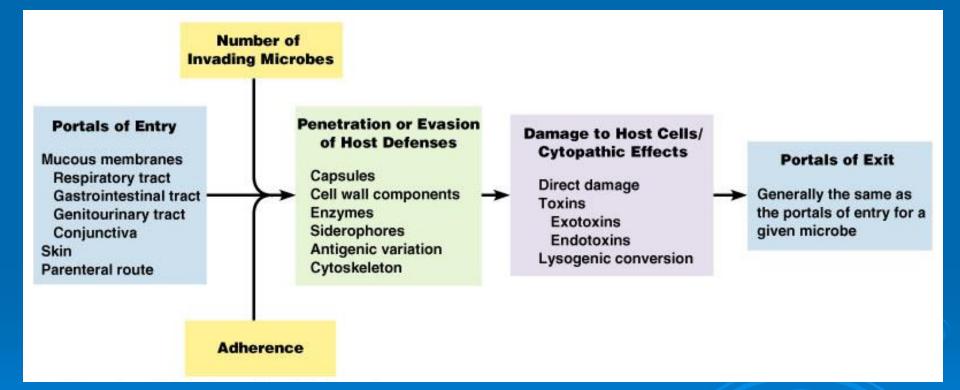
Ex. Staphylococcal and Streptococcal toxins that cause toxic shock syndrome

4. Genotoxins (usually A-B)

Ex. Cytolethal Distending Toxin (CDT) that causes mutations, disrupts cell division and may lead to cancer


Nature Reviews | Microbiology

TOXINS	Description	Lysogenic conversion
• Streptococcus pyogenes- Erythrogenic toxin	Membrane-disrupting superantigens. Erythrogenic.	+
• Clostridium botulinum- Botulinum toxin	A-B toxin. Neurotoxin - flaccid paralysis Botox	+
• Vibrio cholerae- Vibrio Enterotoxin	A-B toxin. Enterotoxin. Stimulates cAMP to cause severe diarrhea	+
• Staphylococcus aureus- Enterotoxin	Superantigen. Enterotoxin.	


Table 15.2

Endotoxins	 Endotoxin Findotoxin Findotoxins are part of the outer portion of the cell wall (lipid A; see Figure 4.12c) of gram-negative bacteria. They are liberated when the bacteria die and the cell wall breaks apart.
Source	Gram –
Metabolic product	Present in LPS of outer membrane
Chemistry	Lipid, heat stable
Fever?	Yes
Neutralized by antitoxin	No
LD ₅₀	Relatively large- 10 million times greater than LD ₅₀ for botulinum toxin

Endotoxins

Mechanisms of pathogenicity

Independent Study

Microbes and you- who will win the war? Feel free to modify word doc so that you have room to write out answers. **TYPED APO-5 is due on the day of Exam 3.**

APO-5 will encompass several lectures and includes Chapters 15-18. It is due the day of Exam 3.

Mechanisms of Virulence

For each virulence factor below, describe whether it contributes to increased virulence by being invasive or toxic or both, and how it helps the pathogen to overcome a host defense mechanism.

1. *Neisseria gonorrhea* produces pili and adhesins specific to the human urogenital epithelium.

2. The pilin genes in *Neisseria gonorrhea* periodically recombine.

- 3. Many *Streptococcus* strains coat themselves in a slimy glycocalyx.
- 4. Staphylococcus aureus can synthesize hemolysins.
- 5. Chlamydia infects a host phagocyte and prevents lysosome fusion.

Etc.