
Anatomy Lecture Notes Section 2: The Skeletal System

What is the Skeletal System?

Our **skeleton** is the very framework of the human body. The skeletal system consists of **bones** (both fused and individual) which are held together, supported and supplemented by associated connective tissue, such as **cartilage**, **tendons** and **ligaments**.

The body's skeletal system accounts for about **20%** of body weight. Osseous (bone) tissue is very dynamic and can change in accordance with body activity and nourishment. Bone is richly supplied with blood and uses plenty of oxygen (O_2) due to its activity. It also releases natural metabolic waste products, especially during childhood growth.

The skeletal system literally provides the framework that gives us our basic shape. At birth humans have about 270 bones. However, this number typically decreases to **206** bones in fully grown adults, as several of the developing bones fused together and become one bone (a process **called synostosis**) during infancy or by the time of early adulthood.

An example of synostosis is how the **mandible** (lower jawbone) is composed of **two separate bones** in the developing fetus and at birth (see image of the fetal skull at left). The red arrow shows the mandibular symphysis which is a transient type of immovable articulation holding the 2 separate halves of the mandible bones together. During the first year after birth, **ossification** of this joint occurs (meaning it becomes bone), this results in one single mandible bone. The faint remnant of the mandibular symphysis can sometimes be seen as a subtle midline ridge of the mandible.

Do you notice any other bone in the photo of the fetal skull (left) that starts as two bones and becomes one later in life? Hint: The forehead is made of the frontal bone, and adults only have one frontal bone, but the fetal skull has 2.

The fusion stage of these two fetal skull bones can be used to determine the age of a fetus or a baby.

Osseous Tissue and Skeletal Structure

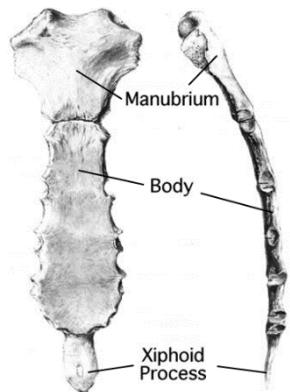
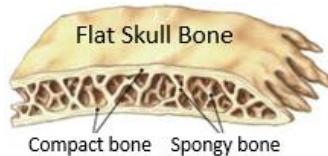
What are the Functions of Bone? – There are many roles of the skeletal system. Here are 5 basic roles.

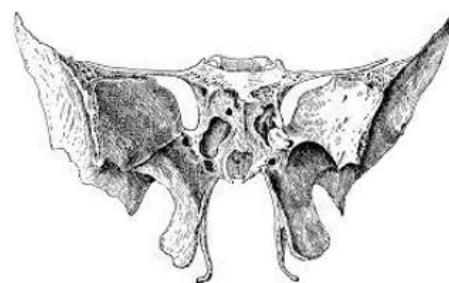
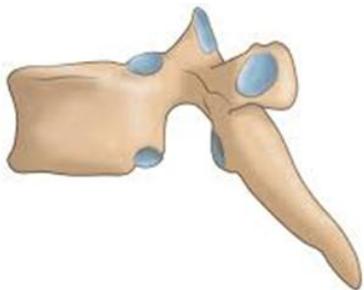
1. Bones provides support and a structural framework for the body.
2. Bone give protection to more delicate tissue. For example, the bony thoracic cage protects the heart and lungs; the skull protects the brain; the pelvis protects some internal organs.
3. Storage in the Body. Bone provides mineral storage in the body, mostly calcium and phosphorus. Yellow bone marrow is also stored in the medullary cavity of long bones. This is primarily adipose (fat) tissue, and adipocytes store triglycerides that can be used as Energy in the body.
4. Blood Cell Production. The red bone marrow (myeloid tissue) stored in the medullary cavity of some bones is responsible for making all the cells found in blood, a process called *hematopoiesis*.
5. Body Movement, in conjunction with articulations and the skeletal muscle attached to bones.

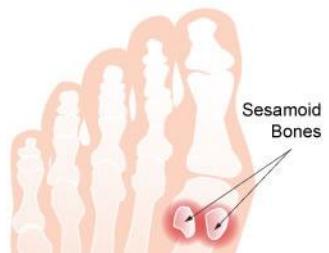
Classification of Bones by Shape

1. Long bones – are bones such as the **femur, humerus, tibia, radius, metacarpals, metatarsals, phalanges**, all these bones share the similar basic anatomical arrangement including having:

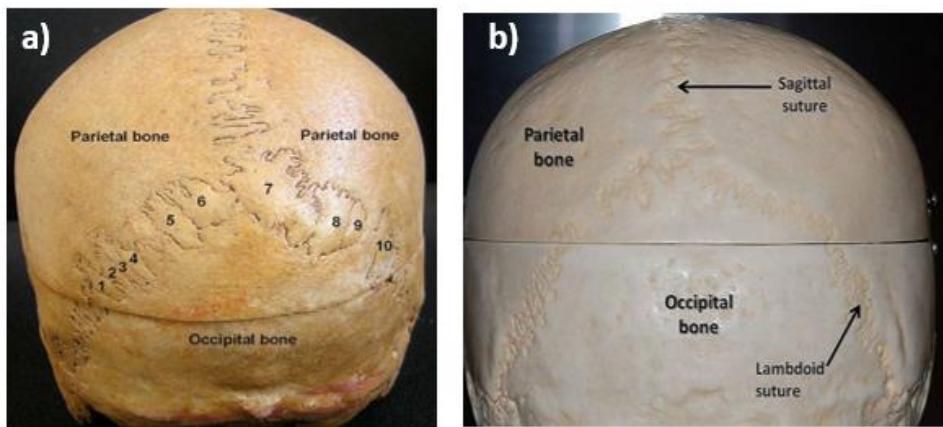
- a diaphysis (shaft);
- both proximal and distal epiphyses;
- a medullary cavity lined with endosteum containing either red or yellow (fatty) bone marrow.



2. Short bones – are bones that are no longer than they are wide, they are sometimes referred to as 'boxy' bones. There are two main examples: 1) the **carpal bones** of the wrists (except for the pisiform); and 2) **tarsal bones** of the ankle and foot.



3. Flat bones – these are bones that have surface compact bone that encloses a thin spongy portion internally, e.g., the flat cranial bones like the **frontal, parietal**, and **occipital** bones of the skull. A perfect image of this description in bone is seen in the drawing below (center), this is what a typical flat 'roofing' bone of the skull looks like. Also, facial bones such as **nasal, lacrimal** and **vomer** bones are also examples of flat


bones of the skull. Other flat bones include the sternum (shown at right) and the **ribs** of the thoracic cage (see left), the **scapula**, and bone of the **ilium, ischium** and **pubis** of the os coxae (also called the innominate bone).

4. Irregular bones – these types of bones have no definable shape, hence the term 'irregular'. There may be flat or long portions of the bone, but the most striking feature is that it is irregular and distinct in its shape. Bones in this category include all the **vertebrae**, plus the **sphenoid, ethmoid, maxillary** and **temporal** bones of the skull. Below (left) is a thoracic vertebra (it has the unique structures of facets for costal cartilage), and below (right) is the distinctly irregular sphenoid bone of the skull.

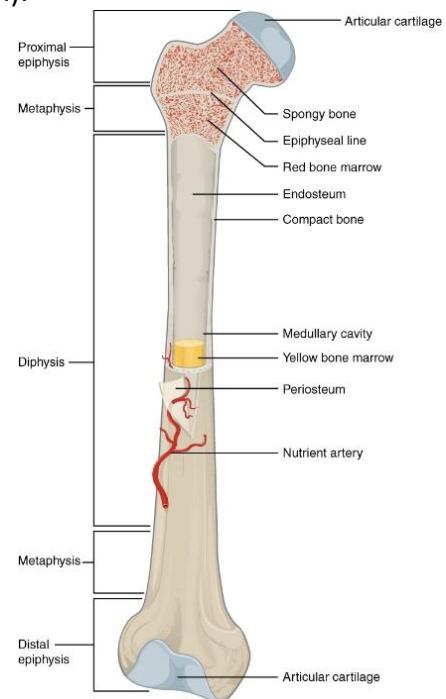


5. Sesamoid bones – these bones are like a "sesame seed" and are commonly found embedded in a muscle or tendon that is near a joint surface. The **patella** is an example, it is found within the quadriceps tendon and patellar ligament of the knee and is the largest and most consistent example of a sesamoid bone in the human body. The **pisiform** of the carpal bone is also a consistent sesamoid bone, located in the flexor carpi ulnaris tendon that flexes the wrist. There are also hallux (big toe) sesamoid bones that act as a pulley system to ease of the muscle or tendon stress in that area (see right).

6. Sutural bones – these are also called Wormian bones (an eponym). These small bones form inside the sutures of the skull, usually in the lambdoidal or sagittal sutures, see a) below. They are inconsistent in number and shape but are all very small. Sometimes they are not present in a skull at all, see b) below.

A skull a) with, and b) without sutural bones

The Anatomy of a Long Bone - A long bone consists of several sections defined below.


Diaphysis - the long central portion of the bone, also called the shaft.

Epiphysis - the ends of the long bone, proximal (top) and distal (bottom).

Metaphysis - this is the area between the diaphysis and epiphysis and contains either the epiphyseal plate (the site of length-wise growth of long bones) or the epiphyseal line (remnant of the growth plate).

Epiphyseal Plates - are the 'growth plates' of bones which allow for the length-wise growth of long bones to occur during childhood. This growth plate is composed of **hyaline cartilage** and once the cartilage plates ossify (become bone tissue) it fuses into the epiphysis and then it becomes the bony **epiphyseal line**, which serves as a remnant of the growth plate. Once there is an epiphyseal line, no more length-wise growth of bones can occur. Typically, long bones stop their length-wise growing between the ages of 18 and 26.

Articular Cartilage - this is a special type of hyaline cartilage that covers the ends of epiphyses. It provides a smooth surface which forms a movable articulation (joint) with another bone, so that friction is minimized. This is a very thin but firm layer of flexible resilient hyaline cartilage, said to have distinct viscoelastic properties that helps reduce friction at the site of the articulation and can also provide shock absorption to the joint. This tissue has no neural or vascular supply.

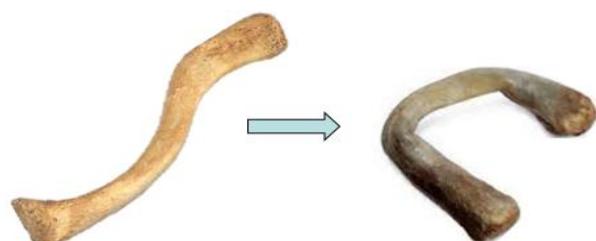
Medullary Cavity - this is also called the **marrow cavity**. It is the central hollow area inside the middle of the diaphysis (shaft) where **red** (myeloid tissue) and/or **yellow** bone marrow (adipose tissue) is stored. The medullary cavity has walls composed of spongy (cancellous) bone and is lined with a thin, vascular membrane called the **endosteum**.

Endosteum - the inner lining of the medullary cavity of long bone. It is in contact with the bone marrow.

Periosteum - this is the outer covering around bone. It has **2 layers**: An outer fibrous layer composed mostly of fibroblasts that make collagen fibers; and an inner cellular layer, composed mostly of osteoprogenitor cells which will be able to differentiate into osteoblasts. The periosteum provides a good blood supply to the bone and serves as a point for muscular attachment.

Sharpey's Fibers - also called **perforating fibers**, this is connective tissue consisting predominantly of bundles of strong collagen fibers connecting the periosteum to a bone. It is the outer fibrous layer of periosteum that enters into the outer circumferential and interstitial lamellae of compact bone tissue. They assist in the attachment of skeletal muscle to the periosteum of bone by merging with the fibrous periosteum and underlying bone as well.

The Constituents of Bone Tissue


What exactly makes up the material that we see as bone? There are two main components of bone: **1) the organic material**, which are cells, protein fibers and some organic molecules; and **2) the inorganic elements** which are essentially the mineral salts that are so critical to giving bone its rigid quality which is fundamental to many of its important roles in the body. It may surprise some to know that only about 1/3 of bone is composed of organic material, and about 2/3 of bone is composed of inorganic material.

Organic Components (1/3)	Inorganic Components (2/3)
Collagen Fibers (proteins)	Calcium Hydroxyapatite (80%) (Ca^{2+} and PO_4^{3-})
Specialized Bone Cells (4 cells)	Calcium Carbonate (15%)
Glycosaminoglycans (GAGs)	Other trace minerals (Mg, Na, Zn, Cr, Cu, etc.)
Give Bone Flexibility	Gives Bone Rigidity

Calcium Hydroxyapatite is a natural mineral combination of calcium and phosphorus. The chemical formula is $\text{Ca}_{10}(\text{PO}_4)_6 \cdot 2\text{OH}$, or it can be expressed by 2 units of $\text{Ca}_5(\text{PO}_4)_3(\text{OH})$. If the components of bone were measured by volume, it consists of **40%** of the inorganic calcium hydroxyapatite component, **25%** water and **35%** organic component (proteins). The organic component is composed mostly of collagen type I (90%), the 4 cell types of bone, and the a glycosaminoglycans (non-collagenous molecules).

Experiments have shown that soaking a bone in acetic acid (vinegar) for a few days will dissolve the calcium mineral salts (calcium hydroxyapatite) out of the bone, leaving only the organic components (mostly collagen) behind. The bone then becomes soft and rubbery, such that it can be bent (see the collar bone below), and if the bone is long enough, it can even be tied into a knot.

Heating bone can destroy the protein fibers but leaves behind the hard materials, mostly calcium and phosphorus. However, it is very brittle without the organic elements, and although minerals give the bones their

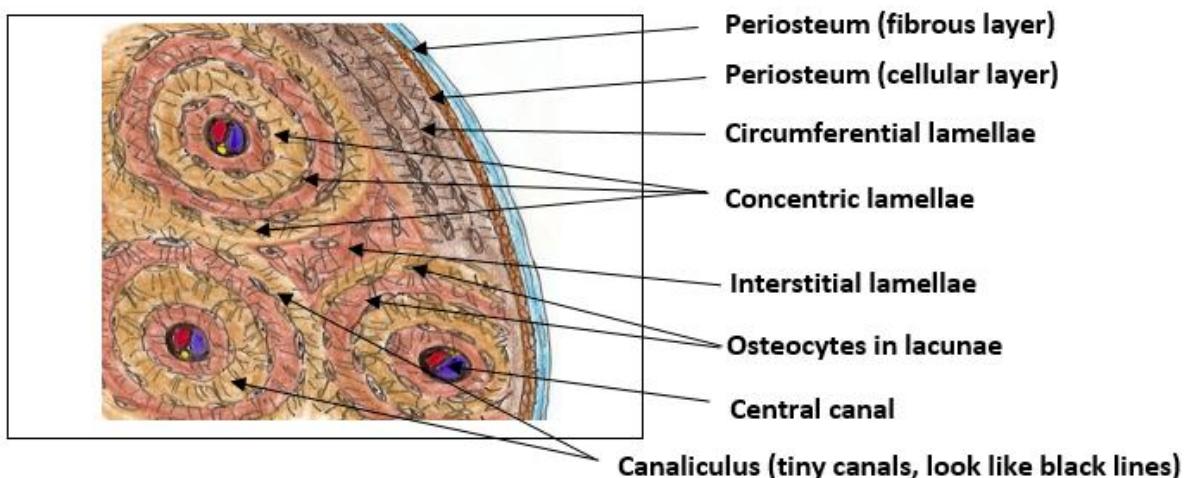
hardness, without the proteins fiber it breaks easily. Bone in a living body are very watery and dense, and not dry like the bones we see in an anatomy bone box in lab. The image below shows the difference between a control bone (no heat) and when it is heated at successively higher temperatures, and when bones are heated at high temperatures, the bone tissue becomes very brittle and inflexible.

Bone itself as a material is a superior conductor of heat compared to the muscle that is attached to it. As we have seen, bone is not completely solid, not only is there a medullary cavity in the middle of long bones, but all bones have that honeycomb-like structure of spongy bone within it, and this area contains many air spaces. These air spaces guard against temperature fluctuations, and in this way bone acts to thermally protect the muscle and other tissues that are in close proximity to it.

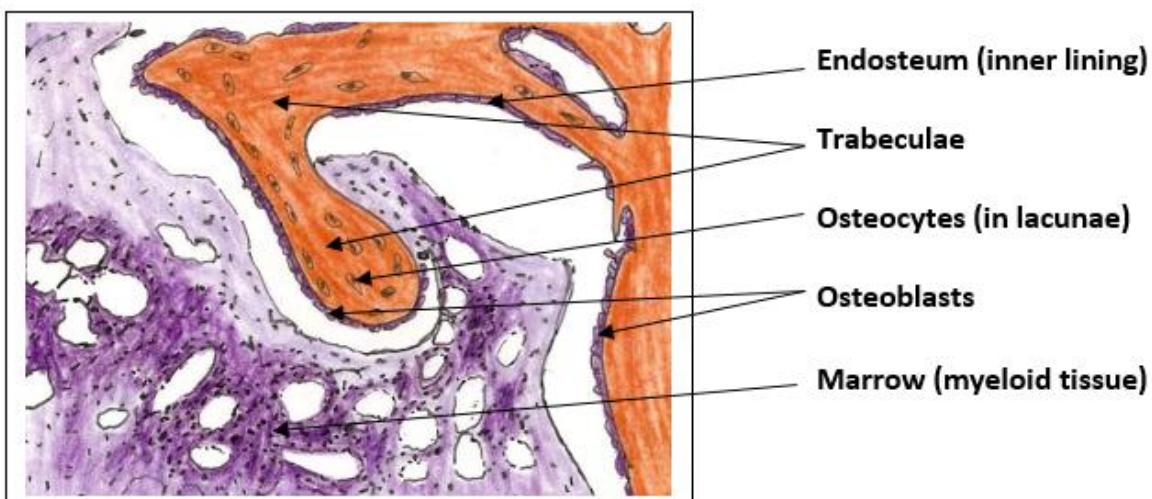
Specialized Cells of Bone

Bone tissue is derived from the primary germ layer the **Mesoderm**. The **osteoprogenitor** cells are the stem cells of bone tissue and this is where the cell lineage for bone tissue starts. These cells continue to **differentiate** (meaning become more specialized in structure and function), creating the second and third types of bone cell. There is a separate type of bone cell called an **osteoclast**, which is derived from a type of white blood cell called a monocyte, thus it has a separate lineage from the first 3 types of bone cells.

The Four Bone Cells


- 1. Osteoprogenitor cells:** These cells are the *stem cell of bone* tissue, they reside in the periosteum and endosteum. This is the only cell with “mitotic potential”, that is, the only bone cell that is able to multiply and reproduce itself. This cell differentiates (becomes) an osteoblast (the next bone cell).
- 2. Osteoblasts:** These cells cannot multiply (or divide), but they *make the calcified bone matrix* called osteoid tissue. The suffix -blast means ‘maker’. These cells lay down the various lamellae and trabeculae of bone. It is found in endosteum and in the inner cellular layer of the periosteum. This cell differentiates (becomes) an osteocyte (the next bone cell).
- 3. Osteocytes:** These are the *mature cells of bone* that are located inside a lacuna. They can no longer make bone matrix but now maintain the bone matrix with canaliculi (extensions of the plasma membrane) that reach out into the lamellae to support and maintain the bone tissue.
- 4. Osteoclasts:** These are very large multinucleated cells, made from a fusion of up to 50 monocytes (a type of white blood cell). They have a ‘ruffle border’ on one aspect of the cell where they release their powerful degradative enzymes. These cells are the **dissolvers** of bone matrix. The suffix -clast means ‘destroyer’. By dissolving bone matrix they liberate the calcium ions (Ca^{2+}) and other ions stored there, and since calcium is such an important ion in regulating many physiological pathway, this is a highly regulated process in the body.

The activities of the **osteoblasts** (the bone maker) and the **osteoclasts** (the bone breaker) are how we change the shape and thickness of bone tissue in the body - a process referred to as **remodeling** of bone.


Bone Histology

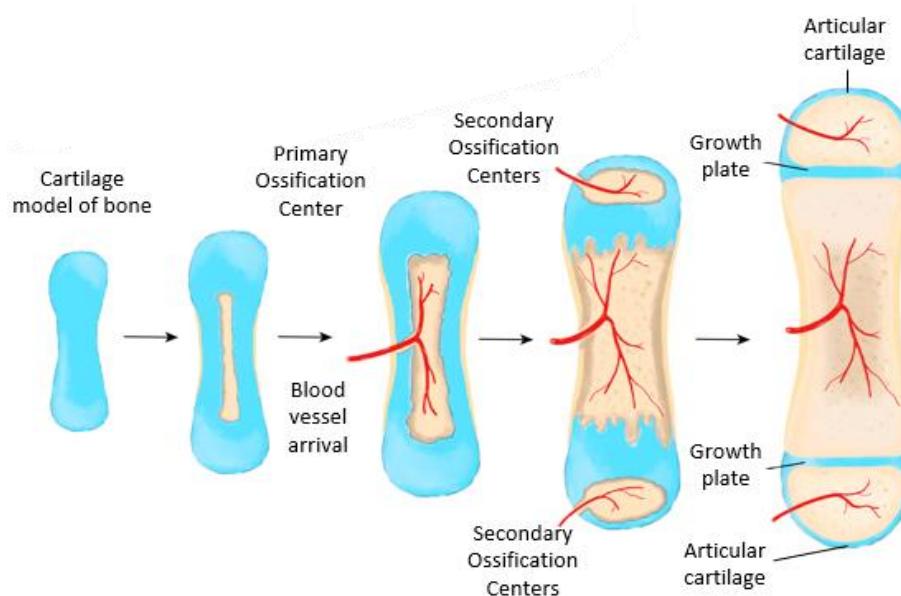
Compact Bone – The **Osteon Unit** is the functional unit of compact bone, it consists of these structures:

- Concentric rings of calcified lamella that are arranged around the central canal.
- Central (Haversian) canals in the middle of an osteon.
- Perforating (Volkmann) canals which connect the various central canals.
- Lacunae ('lagoons') are spaces in the lamella in which osteocytes reside.
- Canalculus (singular) and canaliculi (plural) means 'tiny canals', they are actually extensions of the plasma membrane of osteocytes that are penetrating the surrounding calcified matrix, permitting the maintenance of bone via diffusion of nutrients, wastes, etc.
- Collagen fibers in the mineral matrix give strength and flexibility to the bone.
- All compact bone is covered by periosteum, which has an outer fibrous layer and an inner cellular layer.

Spongy (or Cancellous) Bone – is the bone tissue that is made first and the **trabeculae** (plates or struts) are the functional unit of spongy bone. Osteocytes are still located in lacunae in spongy bone and the osteoblasts are found on the surface of the trabeculae within the endosteum. This is also where the very large osteoclasts cells are located. The trabeculae provide internal spaces in bone which can contain red bone marrow (also called myeloid tissue) where blood cells are made.

Bone Formation and Growth

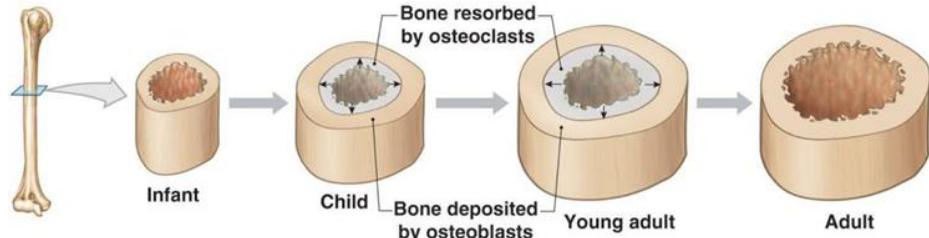
There are two types of bone formation or ossification in the body; **intramembranous ossification** and **endochondral ossification**.

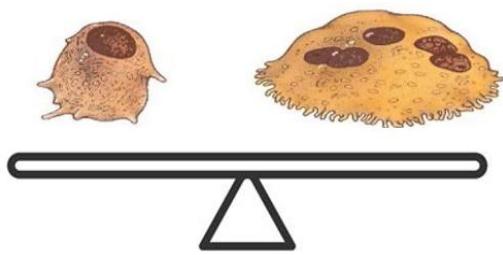

1. Intramembranous Ossification: In this process, bone tissue forms inside a membrane from an ossification center and grows peripherally. Bone tissue replaces the membranous model, and the resulting bones are often called 'dermal' bones. Since all connective tissue arises from the middle primary germ layer (the mesoderm), it is the **mesenchymal cells** that are the stem cells for all connective tissue. These stem cells differentiate into the stem cell for bone tissue, called the **osteoprogenitor cells**. These cells continue to differentiate and become **osteoblasts**, the bone-maker cells. Finally, they become trapped inside lacunae and become the mature cells of bone, the **osteocytes**. In a simplified but accurate pathway of the bone tissue, bone cell differentiation arises in the progression shown below:

Mesoderm → Mesenchymal cells → Osteoprogenitor cells → Osteoblasts → Osteocytes

This process is not the way most bones in the body are formed, so there are just a few examples and they are; the flat roofing bones of the skull, such as the **frontal** and **parietal** bones; the **mandible**, **clavicle** and **patella** are also made by intramembranous ossification.

2. Endochondral Ossification: This is the way that most bones in the body are formed. In this type of bone formation, a **cartilage model of bone** is created first (see image below) and is replaced by bone. The type of cartilage is **hyaline cartilage**, of course. The cartilage model of bone is found in long and short bones and in those parts of irregular bones which are pre-formed of cartilage (cartilage bones). The resulting bone is histologically identical to bones that are formed by intramembranous ossification.


Here is a brief summary of the basic process of endochondral ossification. It starts after the cartilage model of the bone is complete (see image below), when there arises a central cavity in this structure, left by the dying chondrocytes, this is the site of the arrival of blood vessels. Along with this migration of blood vessels includes the arrival of mesenchymal cells (stem cells for connective tissue), which then differentiate into Osteoblasts. Osteoblasts replace the cartilage matrix with spongy bone, and this becomes the **primary ossification center** (see below). This results in the spongy bone being created in the shaft of the bone, which will later then be remodeled (by osteoclasts) into the single marrow cavity, with an outer layer of compact bone.


Secondary ossification sites begin later at each epiphysis of the bone, that is, at the proximal and distal epiphyses; these are called the **secondary ossification centers**. This arrangement leaves a strip of articular cartilage at each end of bone, and a band of cartilage within the metaphysis and this is called the **epiphyseal plate**, which is the **growth plate**. This is the site where the length-wise growth of long bones

occurs, as the cartilage in reserve here reproduces itself; the chondrocytes enlarge and become more active metabolically, thus causing minerals to precipitate.

Eventually the cartilage reserve at the epiphyseal plate itself **ossifies** which finally creates the **epiphyseal line**, a remnant of the growth plate, signifying the end of bone growth in terms of length. An increase in bone girth (width) is called **appositional bone growth** and occurs as osteoclasts remodel bone from the medullary cavity as the osteoblasts add more bone matrix to the outside. This type of bone growth (appositional) can occur at any time in life.

There is a balance in activity between the **osteoblasts** (bone makers), shown on the left in the drawing below, and **osteoclasts** (bone dissolvers), shown on the right in the drawing below. The balance is continually slightly changing, and this can be referred to as **bone remodeling**. Since bone tissue is so dynamic and responsive to the body's needs, this is a normal constant process for bone. For normal bone growth, maintenance and repair to occur, remodeling of bone is continuously occurring throughout one's lifetime. If the activity of either one of these bone cells becomes excessive or deficient, then the precise balance required for good bone health cannot be maintained.

Disorders of Bone Tissue

Osteoporosis: A significant reduction in bone mass that impairs function. It results from too little mineralization of bones for any of several reasons:

- 1) Decrease in hormone levels, e.g., loss of estrogen at menopause decreases calcium absorption.
- 2) Deficiency of mineral in youth resulting in too little to begin with.
- 3) Imbalance of activity of osteoblasts and osteoclasts.

Osteopenia: A reduction in bone mass with age. Usually associated with a decrease in osteoblast activity.

Osteomalacia: This is a defective mineralization of bone, resulting in too much flexibility. Most commonly due to a deficiency in vitamin D levels in the Body. This condition is called rickets in children.

Osteophyte: also called a bone spur, this is an outgrowth of bone occurring along the edges of a bone. It can form in any bone but it is most commonly found in joints and where ligaments or tendons attach to the bone. Frequent locations include the spine, shoulders, hands, hips, knees, and feet, particularly the heel, where they are called heel spurs (see Xray image at right).

Osteoarthritis: Wear and tear arthritis, this is due to the heavy normal use of a joint throughout a lifetime. The most common joints having wear are the knee, hip and finger joints.

Osteoma: Cancer of bone tissue.

Bone Fractures

Fractures of Bone involve a break or crack in bone. As we will see below, there are many different types of bone fractures, primarily based on the pattern of damage that occurs to the bone.

Firstly, there are two basic categories for any kind of bone fracture, and that is **Simple** or **Compound**.

Simple (Closed) Fracture – is when the skin remains intact (not broken). Although the bones are broken, they remain within the body and do not penetrate or break the skin.

Compound (Open) Fracture – is when the skin is broken by the fractured bone. The broken bone has penetrated through the skin and exposed the bone and deep tissues to the exterior environment.

For the most part, a compound fracture involves increased risks in the following ways:

- 1) **Increased risk of infection** (due to compromised skin barrier), leaving a region of our body vulnerable to exposure.
- 2) **Increased risk of blood loss**. The pressure within the body is higher than the lower pressure externally and therefore if a blood vessel has been damaged by the fractured bone, it is easier for blood loss to occur, moving toward the outside environment. Internal bleeding can occur with a closed fracture, but there can be a greater possibility of blood loss from an open fracture.

Another important basic category for fractures is whether the bone is displaced or non-displaced, which is referring to the normal anatomical alignment of the fractured bone.

Non-displaced Fracture: This is when a bone breaks but retains its normal anatomical alignment within the body. This is seen in the oblique fracture on the far left. In nondisplaced fractures, they often only require bracing, booting or casting for treatment.

Displaced Fracture: This is when there is a displacement of a bone fragment or section of bone caused by the fracture wherein the bone breaks into two or more sections and it is moved out of its normal anatomical alignment. In other words, the bone pieces are not properly lined up any longer (see the right bone in the image at left).

This kind of fracture often requires a “re-alignment” of the bone pieces prior to setting a cast or brace. This can be a very painful experience because it involves a re-adjusting very sensitive injured tissue. Some who have experienced a “re-alignment” of a fractured bone say that it is more painful than the actual fracture event.

Below is a list of some basic types of fractures. Also see lecture PPT slides or any other resource.

Comminuted fractures are severe fractures that involve the shattering of a bone into many smaller pieces.

Transverse fractures occur across the bone, perpendicular to the longitudinal axis of a bone and are the result of a force applied at a right angle to the bone.

Greenstick fracture is when the bone partly fractures on one side, but does not break completely because the rest of the bone can bend. More common among children whose bones are softer and more elastic. The name comes from the fact that the bone is like a green stick; it won't snap and break all the way through, but rather it bends and splinters on one side like a green stick because it is flexible.

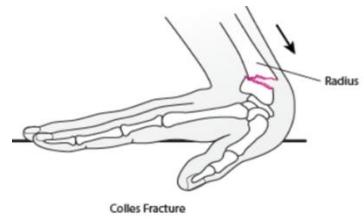
Hairline fracture is a partial fracture of the bone. Often this type of fracture is harder to detect.

Avulsion fracture is when a muscle or ligament pulls on the bone, fracturing it. These fractures may be caused by the overexertion of muscles or sudden traumatic pulling.

Oblique fractures are slanted or diagonal fractures that occur when a force is applied at any angle other than a right angle to the bone.

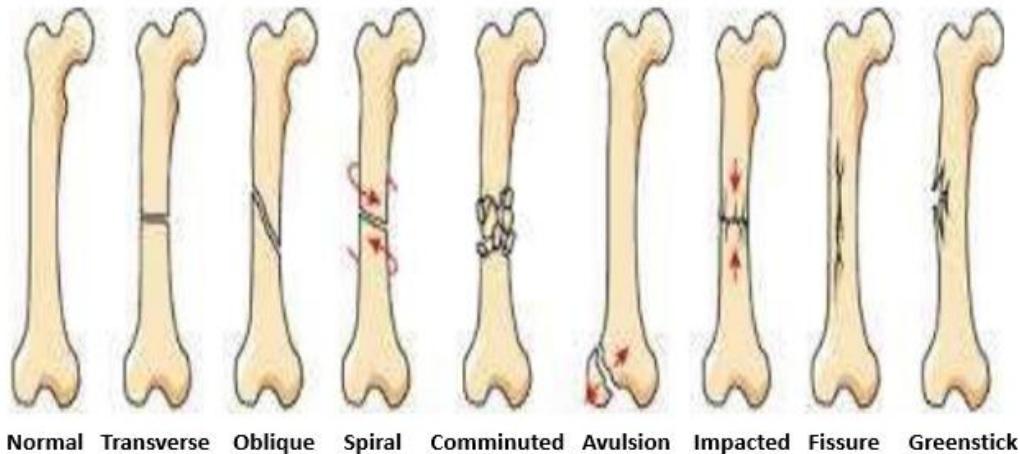
Spiral fractures are the result of an extreme twisting force being exerted on a bone. These are commonly found in sporting injuries.

Compression (crush) fracture, these generally occur in the spongy bone of bones of the spinal column. For example, the front portion of a vertebra in the spine may collapse due to osteoporosis.


Segmental fractures happen when a bone is broken in at least two places, leaving a segment of bone that is totally separated by the breaks. These fractures are often seen in car accidents.

Stress fracture is more common among athletes and occurs when a bone breaks because of repeated stresses and strains in a particular area of bone.

Longitudinal fracture when the break is along the length of the bone.


Impacted fracture is also called a **torus** or **buckle** fracture. This can occur when a bone is compressed and pressure is applied on an area, causing parts of the bone to crumble under the impact of the force. The bone deforms but does not really crack. This is more common in children.

Colle's fractures are of the distal radius, usually occurring as the result of a fall onto an outstretched hand. They consist of a fracture of the distal radial metacarpal region with dorsal angulation and impaction (see right).

Pott's fracture involves one of the bony parts of the ankle called the malleolus (plural malleoli), of either the tibia (the medial malleoli on the inside), or the fibula (the lateral malleoli on the outside).

Typical Bone Fractures

The 4 Essential things required for Normal Bone Growth, Repair and Remodeling

For bone tissue to engage in normal functions such as growth, remodeling of bone tissue and any repairs of bone tissue, it needs to have these four main elements in balance.

1) Adequate Minerals:

Plenty of **Ca²⁺** and **PO₄²⁻** are required and absolutely necessary for normal bone activity. As we have seen, bone will be too flexible without adequate minerals. Also extremely important to bone and the entire body, are the trace minerals, there are about 80 of them, all can be gained in Celtic and other sea salts. These include Magnesium, Sodium, Potassium, Chloride, and trace minerals like Zinc, Copper, Manganese, Boron, Selenium, Silicon and Sulfur. **Bamboo salt** contains high levels of Silicon (Si) and Sulfur (S), which respectively provide additional strength and flexibility to bone.

2) Adequate Vitamins:

We need these Vitamins: **D**, **K2**, **C**, and **A**. Vitamin **D** is needed for the proper mineral depositions in bone, called the 'mineralization' of bone. Vitamin **K2** activates 2 proteins in the body, matrix Gla protein (MGP) and osteocalcin. These both work in sequence to remove excess calcium from the blood (MGP) and put it in the bone osteocalcin. Vitamin **C** stimulates collagen production in the body and plenty of collagen is required for normal bones, it keeps them nice and flexible. Vitamin **A** improves bone density by supporting osteoblasts, and can protect bone. However, excessive Vitamin A intake can inhibit osteoblast activity, even stimulate osteoclast activity, which decreases bone density.

3) Appropriate Hormone Levels:

All of the hormones we have discussed in class that influence osteoblasts, osteoclasts or the levels of calcium in body fluid will have an impact on normal bone growth and repair and so must be maintained at adequate levels. These hormones include: Human **Growth Hormone** (GH), **Thyroxine**, **Calcitriol**, **Parathyroid Hormone**, **Calcitonin**, and **Sex Hormones** (such as estrogen, progesterone and testosterone).

4) Weight Bearing Exercise:

Bone is very dynamic tissue that responds very quickly to use or disuse. Accordingly, bone tissue will **atrophy** (get smaller and become less dense) from lack of use, and will **hypertrophy** (get larger and thicker and more dense) from increased use. Normal, regular weight bearing exercise is vital to maintaining healthy bone tissue.

Bone Markings and Bony Landmarks

Markings on bone are frequently caused by stress on the bone from the blood vessels or the muscles that are literally sitting on the bone, or are present as articulations or passageways for other structures.

Articulating Surfaces:

1. Head is a large, expanded, rounded projection on one end of a bone.
2. Condyle is a smaller projection which articulates with another bone. Some condyles will have specific names, for example, the trochlea of the humerus (means a pulley-like articulation feature) or the capitulum of the humerus (meaning a bowed head shape).
3. Facets are small articulating surfaces that are slightly concave or convex.

Depressions:

1. Fossae are usually shallow depressions in bone, though some can be deeper.
2. Sulcus is a shallow groove in bone (often made by tendons or blood vessels).
3. Fovea is a shallow pit in bone.
4. Alveolus is the 'tooth socket', the depression in bone where a tooth sits.
5. Neck is the constriction below the head of a bone.

Passageways:

1. Foramen is a hole through a bone, usually with smooth edges.
2. Meatus is a passageway into, but not through a bone, as the ear hole.
3. Fissure is an irregular crack, usually between two bones.
4. Sinus, in the skeletal system, is a hollow cavity or chamber within a bone.

Extensions and Projections:

1. Process is any projection from the surface of a bone, frequently for muscle attachment, a handle.
2. Ramus is a branch, or an abutment (plural is rami).
3. Trochanter exists only on the femur (greater and lesser), very large projections for muscle attachment.
4. Tubercl is a much smaller projection from a bone, usually somewhat rounded, for muscle attachment.
5. Tuberosity is rough area on bone, as a result of muscle stress, easier felt than seen.
6. Crest, as the name indicates, is an elevated ridge on a bone, like the ridge of a mountain range.
7. Line is a small or sharp ridge similar to a crest but less prominent, like the walkway along a hillside.
8. Spine is a pointy projection for muscle attachment.
9. Styloid refers to a needle-like projection, as in an old-time record player stylus.