Class Activity #10 Physiology

Student Presentations, Respiratory Control and the Renal System

1. Suggestions for how to find a good Scientific Article that you like.

a) Think of a topic that interests you and involves physiology.

b) Conduct a general search online, then focus on a more specific topic.

c) Use the Miramar Library "ProQuest Research Library" https://login.libraryaccess.sdmiramar.edu/login?gurl=http%3a%2f%2fsearch.proquest.com%2f%3faccountid%3d38871%26selectids%3d10000025 d) Target Date for Presentations will soon be announced.

2. Control of Respiration and Intro to the Renal System

Read and use your OER textbook, worksheets, lecture notes, slides or internet to provide best answers.

1) <u>Fill in</u>	this	Feedba	ack Lo	op: If tl	he pH of <i>a</i>	<i>rterial</i> bloc	od decrea	ases, tł	nen thi	s will be	detect	ed by a ty	pe of
receptor that in general is called a							, because it chemicals. Specifically,						
they are	e na	med fo	r their	locatio	on. In the	aorta they	/ are call	led				; i	n the
carotid	ar	teries	they	are	called				·	They	send	signals	the
in the CNS. This then signals the effector tissue, principally the primary													
muscle	of	inspira	ation,	the _				It's	activ	vity wil	l (incre	ease/decr	ease)
				_, ther	eby			levels o	of	in	arteria	blood.	

2) There are stretch sensitive _	within	within the lung tissue that detect changes in lung			
They are tr	iggered if the lunges become	They then			
send signals specifically to the _	/	which is located in the pons. This specific			
region then acts to	another region called the _	(which is also in the			
pons), therefore, this works to p	prevent of tl	he lungs.			

3) If the main regulator of ventilation is CO_2 in the blood/CSF, then why does hyperventilating make people faint? Furthermore, if hyperventilating, why would breathing into a paper bag prevent fainting?

4) Write the Bicarbonate Buffer Equation:

5) If there is an increase in CO₂ in CSF (and the P_{CO2} is also high in cerebral capillaries), this will cause a shift to the Bicarbonate Buffer Equation in which direction? ______.

6) If the Eq. above is moving	ng in the forward directi	ion, then more	will k	pe made. Th	nis ca	uses
a/an	_ in the pH of CSF. Due		on cerebral			
capillaries, any excess	cannot leave the CSF by moving across the capillar				here	fore,
the concentration of	will contin	within	within the brain. It is when			
this excess in	binds to the	central		located	in	the
	of the brain, th	nis then triggers the	e response to			
ventilation. This will then	cause a/an	in the	levels,	which will t	then	shift
the Eq. in the	direction which will	in	in the pH of the CSF.			

2

3. Introduction to the Renal System

1) List and briefly describe the 5 main functions of the renal system (as discussed in lecture).

3) Angiotensinogen is made by the substance , which is released by the	and is (active/inactive) until it is acted on by the in order to
3)	
2)	
2) What are the <u>3 Nitrogenous wastes</u> normally four1)	nd in Blood? What are they the product of?
5)	
4)	
3)	
2)	
1)	

Multiple-Choice Questions

1. Which of the following areas of the brain can influence a person's breathing?

- 1. pons
 2. limbic system
 3. medulla oblongata
 4. cerebellum
 5. thalamus
 6. cerebrum
 a) 1 and 3
 b) 3, 2, 5 and 1
 c) 4, 3, 2 and 1
 d) 4 and 5
 e) 6, 1, 3 and 2
- 2. If breathing air at 30m under water, the changes in pressure can have which effects on the body?
- 1. oxygen narcosis 2. decreased solubility of N₂ 3. increased reactivity of H₂
- **4.** decreased solubility of CO₂ **5.** increased solubility of O₂ **6.** nitrogen narcosis
 - a) 1, 6 and 5 b) 3, 5 and 6 c) 2 and 5 d) 6, 2 and 4 e) 1, 5, 6 and 2
- 3. Using the answer code below, indicate which chemoreceptors are being described.
- A = peripheral chemoreceptors, B = central chemoreceptors, C = both chemoreceptors, D = neither
 - **1.** _____ stimulated by a drop in arterial P₀₂ to 80 mm Hg.
 - **2.** _____ stimulated by an elevated [H⁺] arterial blood.
 - **3.** _____ stimulated by an elevated [H⁺] in CSF.

4. In In the <u>entire</u> renal system, there are ______ nephrons.
a) over 1 million b) fewer than 2 million c) over 2 million d) over 3 million e) over 4 million

5. The glomerular filtration rate (GFR) in a normal adult person is about

a) 75 ml/min b) 180 liters a day c) 180 ml/min d) 125 liters a day e) 125 ml/hour